Расчет тепловой нагрузки отопления здания. Определяем потери

Тепловой расчёт системы отопления: как грамотно сделать расчет нагрузки на систему

Проектирование и тепловой расчет системы отопления – обязательный этап при обустройстве обогрева дома. Основная задача вычислительных мероприятий – определение оптимальных параметров котла и системы радиаторов.

Согласитесь, на первый взгляд может показаться, что проведение теплотехнического расчета под силу только инженеру. Однако не все так сложно. Зная алгоритм действий, получится самостоятельно выполнить необходимые вычисления.

В статье подробно изложен порядок расчета и приведены все нужные формулы. Для лучшего понимания, мы подготовили пример теплового вычисления для частного дома.

Тепловой расчёт отопления: общий порядок

Классический тепловой расчёт отопительной системы являет собой сводный технический документ, который включает в себя обязательные поэтапные стандартные методы вычислений.

Но перед изучением этих подсчётов основных параметров нужно определиться с понятием самой системы отопления.

Система отопления характеризуется принудительной подачей и непроизвольным отводом тепла в помещении.

Основные задачи расчёта и проектирования системы отопления:

  • наиболее достоверно определить тепловые потери;
  • определить количество и условия использования теплоносителя;
  • максимально точно подобрать элементы генерации, перемещения и отдачи тепла.

При постройке системы отопления необходимо первоначально произвести сбор разнообразных данных о помещении/здании, где будет использоваться система отопления. После выполнить расчёт тепловых параметров системы, проанализировать результаты арифметических операций.

На основании полученных данных подобирают компоненты системы отопления с последующей закупкой, установкой и вводом в эксплуатацию.

Примечательно, что указанная методика теплового расчёта позволяет достаточно точно вычислить большое количество величин, которые конкретно описывают будущую систему отопления.

В результате теплового расчёта в наличии будет следующая информация:

  • число тепловых потерь, мощность котла;
  • количество и тип тепловых радиаторов для каждой комнаты отдельно;
  • гидравлические характеристики трубопровода;
  • объём, скорость теплоносителя, мощность теплового насоса.

Тепловой расчёт – это не теоретические наброски, а вполне точные и обоснованные итоги, которые рекомендуется использовать на практике при подборе компонентов системы отопления.

Нормы температурных режимов помещений

Перед проведение любых расчётов параметров системы необходимо, как минимум, знать порядок ожидаемых результатов, а также иметь в наличии стандартизированные характеристики некоторых табличных величин, которые необходимо подставлять в формулы или ориентироваться на них.

Выполнив вычисления параметров с такими константами, можно быть уверенным в достоверности искомого динамического или постоянного параметра системы.

Для системы отопления одним из таких глобальных параметров является температура помещения, которая должна быть постоянной в независимости от периода года и условий окружающей среды.

Согласно регламенту санитарных нормативов и правил есть различия в температуре относительно летнего и зимнего периода года. За температурный режим помещения в летний сезон отвечает система кондиционирования, принцип ее расчета подробно изложен в этой статье.

А вот комнатная температура воздуха в зимний период обеспечивается системой отопления. Поэтому нам интересны диапазоны температур и их допуски отклонений для зимнего сезона.

В большинстве нормативных документов оговариваются следующие диапазоны температур, которые позволяют человеку комфортно находиться в комнате.

Для нежилых помещений офисного типа площадью до 100 м 2 :

  • 22-24°С – оптимальная температура воздуха;
  • 1°С – допустимое колебание.

Для помещений офисного типа площадью более 100 м 2 температура составляет 21-23°С. Для нежилых помещений промышленного типа диапазоны температур сильно отличаются в зависимости от предназначения помещения и установленных норм охраны труда.

Что же касаемо жилых помещений: квартир, частных домов, усадеб и т. д. существуют определённые диапазоны температуры, которые могут корректироваться в зависимости от пожеланий жильцов.

И всё же для конкретных помещений квартиры и дома имеем:

  • 20-22°С – жилая, в том числе детская, комната, допуск ±2°С –
  • 19-21°С – кухня, туалет, допуск ±2°С;
  • 24-26°С – ванная, душевая, бассейн, допуск ±1°С;
  • 16-18°С – коридоры, прихожие, лестничные клетки, кладовые, допуск +3°С

Важно отметить, что есть ещё несколько основных параметров, которые влияют на температуру в помещении и на которые нужно ориентироваться при расчёте системы отопления: влажность (40-60%), концентрация кислорода и углекислого газа в воздухе (250:1), скорость перемещения воздушных масс (0.13-0.25 м/с) и т. п.

Расчёт теплопотерь в доме

Согласно второму началу термодинамики (школьная физика) не существует самопроизвольной передачи энергии от менее нагретых к более нагретым мини- или макрообъектам. Частным случаем этого закона является “стремление” создания температурного равновесия между двумя термодинамическими системами.

Например, первая система – окружающая среда с температурой -20°С, вторая система – здание с внутренней температурой +20°С. Согласно приведённого закона эти две системы будут стремиться уравновеситься посредством обмена энергии. Это будет происходить с помощью тепловых потерь от второй системы и охлаждения в первой.

Под теплопотерями подразумевают непроизвольный выход тепла (энергии) от некоторого объекта (дома, квартиры). Для обычной квартиры этот процесс не так “заметен” в сравнении с частным домом, поскольку квартира находиться внутри здания и “соседствует” с другими квартирами.

В частном доме через внешние стены, пол, крышу, окна и двери в той или иной степени “уходит” тепло.

Зная величину теплопотерь для самых неблагоприятных погодных условий и характеристику этих условий, можно с высокой точностью вычислить мощность системы отопления.

Итак, объём утечек тепла от здания вычисляется по следующей формуле:

Qi – объём теплопотерь от однородного вида оболочки здания.

Каждая составляющая формулы рассчитывается по формуле:

Q=S*∆T/R, где

  • Q – тепловые утечки, В;
  • S – площадь конкретного типа конструкции, кв. м;
  • ∆T – разница температур воздуха окружающей среды и внутри помещения, °C;
  • R – тепловое сопротивление определённого типа конструкции, м 2 *°C/Вт.

Саму величину теплового сопротивления для реально существующих материалов рекомендуется брать из вспомогательных таблиц.

Кроме того, тепловое сопротивление можно получить с помощью следующего соотношения:

R=d/k, где

  • R – тепловое сопротивление, (м 2 *К)/Вт;
  • k – коэффициент теплопроводности материала, Вт/(м 2 *К);
  • d – толщина этого материала, м.

В старых домах с отсыревшей кровельной конструкцией утечки тепла происходят через верхнюю часть постройки, а именно через крышу и чердак. Проведение мероприятий по утеплению потолка или теплоизоляции мансардной крыши решают эту проблему.

В доме существуют ещё несколько видов тепловых потерь через щели в конструкциях, систему вентиляции, кухонную вытяжку, открывания окон и дверей. Но учитывать их объём не имеет смысла, поскольку они составляют не более 5% от общего числа основных утечек тепла.

Определение мощности котла

Для поддержки разницы температур между окружающей средой и температурой внутри дома необходима автономная система отопления, которая поддерживает нужную температуру в каждой комнате частного дома.

Базисом системы отопления выступают разные виды котлов: жидко- или твердотопливные, электрические или газовые.

Котел – это центральный узел системы отопления, который генерирует тепло. Основной характеристикой котла есть его мощность, а именно скорость преобразования количество теплоты за единицу времени.

Произведя расчеты тепловой нагрузки на отопление получим требуемую номинальную мощность котла.

Для обычной многокомнатной квартиры мощность котла вычисляется через площадь и удельную мощность:

  • Sпомещения– общая площадь отапливаемого помещения;
  • Руделльная– удельная мощность относительно климатических условий.

Но эта формула не учитывает тепловые потери, которых достаточно в частном доме.

Существует иное соотношение, которое учитывает этот параметр:

Ркотла=(Qпотерь*S)/100, где

  • Ркотла– мощность котла;
  • Qпотерь– потери тепла;
  • S – отапливаемая площадь.

Расчетную мощность котла необходимо увеличить. Запас необходим, если планируется использование котла для подогрева воды для ванной комнаты и кухни.

Дабы предусмотреть запас мощности котла в последнюю формулу надо добавить коэффициент запаса К:

Ркотла=(Qпотерь*S*К)/100, где

К – будет равен 1.25, то есть расчётная мощность котла будет увеличена на 25%.

Таким образом, мощность котла предоставляет возможность поддерживать нормативную температуру воздуха в комнатах здания, а также иметь начальный и дополнительный объём горячей воды в доме.

Особенности подбора радиаторов

Стандартными компонентами обеспечения тепла в помещении являются радиаторы, панели, системы “тёплый” пол, конвекторы и т. д. Самыми распространёнными деталями отопительной системы есть радиаторы.

Тепловой радиатор – это специальная полая конструкция модульного типа из сплава с высокой теплоотдачей. Он изготавливается из стали, алюминия, чугуна, керамика и других сплавов. Принцип действия радиатора отопления сводится к излучению энергии от теплоносителя в пространство помещения через “лепестки”.

Существует несколько методик расчёта радиаторов отопления в комнате. Нижеприведённый перечень способов отсортирован в порядке увеличения точности вычислений.

  1. По площади. N=(S*100)/C, где N – количество секций, S – площадь помещения (м 2 ), C – теплоотдача одной секции радиатора (Вт, берётся из тех паспорта или сертификата на изделие), 100 Вт – количество теплового потока, которое необходимо для нагрева 1 м 2 (эмпирическая величина). Возникает вопрос: а каким образом учесть высоту потолка комнаты?
  2. По объёму. N=(S*H*41)/C, где N, S, C – аналогично. Н – высота помещения, 41 Вт – количество теплового потока, которое необходимо для нагрева 1 м 3 (эмпирическая величина).
  3. По коэффициентам. N=(100*S*к1*к2*к3*к4*к5*к6*к7)/C, где N, S, C и 100 – аналогично. к1 – учёт количества камер в стеклопакете окна комнаты, к2 – теплоизоляция стен, к3 – соотношение площади окон к площади помещения, к4 – средняя минусовая температура в наиболее холодную неделю зимы, к5 – количество наружных стен комнаты (которые “выходят” на улицу), к6 – тип помещения сверху, к7 – высота потолка.

Это максимально точный вариант расчёта количества секций. Естественно, что округление дробных результатов вычислений производится всегда к следующему целому числу.

Гидравлический расчёт водоснабжения

Безусловно, “картина” расчета тепла на отопление не может быть полноценной без вычисления таких характеристик, как объём и скорость теплоносителя. В большинстве случаев теплоносителем выступает обычная вода в жидком или газообразном агрегатном состоянии.

Расчет объема воды, подогреваемой двухконтурным котлом для обеспечения жильцов горячей водой и нагрева теплоносителя, производится путем суммирования внутреннего объема отопительного контура и реальных потребностей пользователей в нагретой воде.

Объём горячей воды в отопительной системе рассчитывается по формуле:

W=k*P, где

  • W – объём носителя тепла;
  • P – мощность котла отопления;
  • k – коэффициент мощности (количество литров на единицу мощности, равен 13.5, диапазон – 10-15 л).

В итоге конечная формула выглядит так:

W = 13.5*P

Скорость теплоносителя – заключительная динамическая оценка системы отопления, которая характеризует скорость циркуляции жидкости в системе.

Эта величина помогает оценить тип и диаметр трубопровода:

V=(0.86*P*μ)/∆T, где

  • P – мощность котла;
  • μ – КПД котла;
  • ∆T – разница температур между подаваемой водой и водой обратном контуре.

Используя вышеизложенные способы гидравлического расчёта, удастся получить реальные параметры, которые являются “фундаментом” будущей системы отопления.

Пример теплового расчёта

В качестве примера теплового расчёта в наличии есть обычный 1-этажный дом с четырьмя жилыми комнатами, кухня, санузел, “зимний сад” и подсобные помещения.

Обозначим исходные параметры дома, необходимые для проведения расчетов.

  • высота этажа – 3 м;
  • малое окно фасадной и тыльной части здания 1470*1420 мм;
  • большое окно фасада 2080*1420 мм;
  • входные двери 2000*900 мм;
  • двери тыльной части (выход на террасу) 2000*1400 (700 + 700) мм.

Общая ширина постройки 9.5 м 2 , длинна 16 м 2 . Отапливаться будут только жилые комнаты (4 шт.), санузел и кухня.

Начинаем с расчёта площадей однородных материалов:

  • площадь пола – 152 м 2 ;
  • площадь крыши – 180 м 2 , учитывая высоту чердака 1.3 м и ширину прогона – 4 м;
  • площадь окон – 3*1.47*1.42+2.08*1.42=9.22 м 2 ;
  • площадь дверей – 2*0.9+2*2*1.4=7.4 м 2 .

Площадь наружных стен будет равна 51*3-9.22-7.4=136.38 м 2 .

Переходим к расчёту теплопотерь на каждом материале:

А также Qстена эквивалентно 136.38*40*0.25/0.3=4546. Сумма всех теплопотерь будет составлять 19628.4 Вт.

В итоге подсчитаем мощность котла: Ркотла=Qпотерь*Sотаплив_комнат*К/100=19628.4*(10.4+10.4+13.5+27.9+14.1+7.4)*1.25/100=19628.4*83.7*1.25/100=20536.2=21 кВт.

Расчёт количества секций радиаторов произведём для одной из комнат. Для всех остальных вычисления аналогичны. Например, угловая комната (слева, нижний угол схемы) площадь 10.4 м2.

Для этой комнаты необходимо 9 секций радиатора отопления с теплоотдачей 180 Вт.

Переходим к расчёту количества теплоносителя в системе – W=13.5*P=13.5*21=283.5 л. Значит, скорость теплоносителя будет составлять: V=(0.86*P*μ)/∆T=(0.86*21000*0.9)/20=812.7 л.

В результате полный оборот всего объёма теплоносителя в системе будет эквивалентен 2.87 раза в один час.

Подборка статей по тепловому расчету поможет определиться с точными параметрами элементов отопительной системы:

Выводы и полезное видео по теме

Простой расчёт отопительной системы для частного дома представлен в следующем обзоре:

Все тонкости и общепринятые методики просчёта теплопотерь здания показаны ниже:

Ещё один вариант расчёта утечек тепла в типичном частном доме:

В этом видео рассказывается об особенностях циркуляции носителя энергии для обогрева жилища:

Тепловой расчёт отопительной системы носит индивидуальный характер, его необходимо выполнять грамотно и аккуратно. Чем точнее будут сделаны вычисления, тем меньше переплачивать придется владельцам загородного дома в процессе эксплуатации.

Имеете опыт выполнения теплового расчета отопительной системы? Или остались вопросы по теме? Пожалуйста, делитесь своим мнением и оставляйте комментарии. Блок обратной связи расположен ниже.

Расчет систем отопления (часть 2 -Теплотехнический расчет здания)

Основой для определения тепловой нагрузки систем отопления является процедура проведения теплотехнического расчета конструкций здания с учетом всех конструктивных особенностей используемых строительных материалов и их теплоизоляционных свойств. В расчетах также учитывается ориентация здания по сторонам света, наличие естественной или механической систем вентиляции и многие другие факторы теплового баланса помещений.

Читайте также:  Сервопривод для теплого пола. Виды и принцип работы

Методы расчета тепловой нагрузки системы отопления

  1. Расчет потерь тепла по площади помещений.
  2. Определение величины теплопотерь исходя из наружного объема здания.
  3. Точный теплотехнический расчет всех конструкций жилого дома с учетом теплофизических коэффициентов материалов.

Расчет потерь тепла по площади помещений

Первым методом расчета тепловой нагрузки системы отопления пользуются для укрупненного определения мощности системы отопления всего дома и общего понимания количества и типа радиаторов, а также мощности котельного оборудования. Так как метод не учитывает регион строительства (расчетную наружную температуру зимой), количество потерь тепла через фундаменты, крыши или нестандартное остекление, то количество потерь тепла, рассчитанное укрупненным методом исходя из площади помещения, может быть как больше, так и меньше фактических значений.

Источники теплопотерь здания

А при использовании современных теплоизоляционных материалов мощность котельного оборудования может быть определена с большим запасом. Таким образом, при устройстве систем отопления возникнет большой перерасход материалов и будет приобретено более дорогостоящее оборудование. Поддержание комфортной температуры в помещениях будет возможно только при условии, что будет установлена современная автоматика, которая не допустит перегрева помещений выше комфортных температур.

В худшем случае, мощность системы отопления может быть занижена и дом в самые холодные дни не будет прогрет.

Тем не менее, этим способом определения мощности систем отопления пользуются достаточно часто. Следует только понимать, в каких случаях такие укрупненные расчеты приближены к реальности.

Итак, формула для укрупненного определения количества теплопотерь выглядит следующим образом:

При использовании первого метода для укрупненного метода расчета тепловой мощности следует ориентироваться на следующие рекомендации:

  • В случае, когда в расчетном помещении из наружных ограждающих конструкций имеются одно окно и одна наружная стена, а высота потолков менее трех метров, то на 1м2 отапливаемой площади приходится 100 Вт тепловой энергии.
  • При расчете углового помещения с двумя оконными конструкциями или балконными блоками либо помещение высотой более трех метров, то в диапазон удельной тепловой энергии на 1 м2 составляет от 120 до 150 Вт.
  • Если же прибор отопления в будущем планируется устанавливать под окном в нише либо декорировать защитными экранами, поверхность радиаторов и, следовательно, их мощность необходимо увеличить на 20-30%. Это обусловлено тем, что тепловая мощность радиаторов будет частично тратиться на прогрев дополнительных конструкций.

Расчет тепловой мощности исходя из объема помещения

Этот метод определения тепловой нагрузки на системы отопления наименее универсален, чем первый, так как предназначен для расчетов помещений с высокими потолками, но при этом не учитывает, что воздух под потолком всегда теплее, чем в нижней части комнаты и, следовательно, количество потерь тепла будет различаться зонально.

Тепловая мощность системы отопления для здания или помещения с потолками выше стандартных рассчитывается исходя из следующего условия:

При использовании первого или второго метода расчета теплопотерь здания укрупненным методом можно пользоваться поправочными коэффициентами, которые в некоторой степени отражают реальность и зависимость потерь тепла зданием в зависимости от различных факторов.

  1. Тип остекления:
  • тройной пакет 0,85,
  • двойной 1,0,
  • двойной переплет 1,27.
  1. Наличие окон и входных дверей увеличивает величину потерь тепла дома на 100 и 200 Ватт соответственно.
  2. Теплоизоляционные характеристики наружных стен и их воздухопроницаемость:
  • современные теплоизоляционные материалы 0,85
  • стандарт (два кирпича и утеплитель) 1,0,
  • низкие теплоизоляционные свойства или незначительная толщина стен 1,27-1,35.
  1. Процентное отношение площади окон к площади помещения: 10%-0,8, 20%—0,9, 30%—1,0, 40%—1,1, 50%—1,2.
  2. Расчет для индивидуального жилого дома должен производиться с поправочным коэффициентом порядка 1,5 в зависимости от типа и характеристик используемых конструкций пола и кровли.
  3. Расчетная температура наружного воздуха в зимний период (для каждого региона своя, определяется нормативами): -10 градусов 0,7, -15 градусов 0,9, -20 градусов 1,10, -25 градусов 1,30, -35 градусов 1,5.
  4. Тепловые потери так же растут в зависимости от увеличения количества наружных стен по следующей зависимости: одна стена – плюс 10% от тепловой мощности.

Но, тем не менее, определить какой метод даст точный и действительно верный результат тепловой мощности отопительного оборудования можно лишь после выполнения точного и полного теплотехнического расчета здания.

Теплотехнический расчет индивидуального жилого дома

Приведенные выше методики укрупненных расчетов больше всего ориентированы на продавцов или покупателей радиаторов систем отопления, устанавливаемых в типовых многоэтажных жилых домах. Но когда речь идет о подборе дорогостоящего котельного оборудования, о планировании системы отопления загородного дома, в котором кроме радиаторов будут установлены системы напольного отопления, горячего водоснабжения и вентиляции, пользоваться этими методиками крайне не рекомендуется.

Каждый владелец индивидуального жилого дома или коттеджа еще на стадии строительства достаточно скрупулезно подходит к разработке строительной документации, в которой учитываются все современные тенденции использования строительных материалов и конструкций дома. Они обязательно должны не быть типовыми или морально устаревшими, а изготовлены с учетом современных энергоэффективных технологий. Следовательно, и тепловая мощность системы отопления должна быть пропорционально ниже, а суммарные затраты на устройство системы обогрева дома значительно дешевле. Эти мероприятия позволяют в дальнейшем при использовании отопительного оборудования снижать затраты на потребление энергоресурсов.

Расчет теплопотерь выполняется в специализированных программах либо с использованием основных формул и коэффициентов теплопроводности конструкций, учитывается влияние инфильтрации воздуха, наличие или отсутствие систем вентиляции в здании. Расчет заглубленных цокольных помещений, а также крайних этажей производится по отличной от основных расчетов методике, которая учитывает неравномерность остывания горизонтальных конструкций, то есть потери тепла через крышу и пол. Выше приведенные методики этот показатель не учитывают.

Теплотехнический расчет выполняется, как правило, квалифицированными специалистами в составе проекта на систему отопления в результате которого производится дальнейший расчет количества и мощность приборов отопления, мощность отдельного оборудования, подбор насосов и другого сопутствующего оборудования.

В качестве наглядного примера выполним расчет теплопотерь в специализированной программе для трех домов, построенных по одной технологии, но с различной толщиной теплоизоляции наружных стен: 100 мм, 150 мм и 200 мм. Расчет ведется для угловой жилой комнаты с одним окном, площадью 8,12 м?. Регион строительства Московская область.

Исходные данные:

  • Помещение с обмером по наружным габаритам 3000х3000;
  • Окно размерами 1200х1000.

Целью расчета является определение удельной мощности системы отопления, необходимой для нагрева 1м?.

Результат:

  • Qуд при т/изоляции 100 мм составляет 103 Вт/м?
  • Qуд при т/изоляции 150 мм составляет 81 Вт/м?
  • Qуд при т/изоляции 200 мм составляет 70 Вт/м?

Как видно из расчета, наибольшие потери тепла составляют для жилого дома с наименьшей толщиной изоляции, следовательно, мощность котельного оборудования и радиаторов будет выше на 47% чем при строительстве дома с теплоизоляцией в 200 мм.

Инфильтрация воздуха или вентиляция зданий

Все здания в особенности жилые имеют свойство «дышать», то есть проветриваться различными способами. Это обусловлено созданием разряженного воздуха в помещениях за счет устройства вытяжных каналов в конструкциях дома либо дымоходов. Как известно, вентиляционные каналы создаются в зонах с повышенными выделениями загрязнений, таких как, кухни, ванные комнаты и санузлы.

Таким образом, при работе системы вентиляции или при проветривании соблюдается главное правило создания благоприятной среды воздуха в жилых зданиях: направление движения свежего воздуха должно быть организовано из помещений с постоянным пребыванием людей в направлении помещений с максимальным уровнем загрязнения.

То есть при правильном воздухообмене приточный воздух поступает в помещение через окно, вентиляционный клапан или приточную решетку и удаляется в кухнях и санузлах.

При расчете теплопотерь знания имеет принципиальное значение, какой способ вентиляции жилых помещений будет выбран:

  • Устройство механической вентиляции с подогревом приточного воздуха.
  • Инфильтрация — неорганизованный воздухообмен через неплотности в стенах, при открывании окон или при использовании заранее установленных воздушных клапанов в конструкции стен или оконных стеклопакетах.

В случае применения в жилом здании сбалансированной системы вентиляции (когда объем приточного воздуха больше или равен вытяжному, то есть исключаются любые прорывания холодного воздуха в жилые помещения) воздух, поступающий в жилые помещения, предварительно прогревается в вентиляционной установке. При этом мощность, необходимая для нагрева вентиляции, учитывается в расчете мощности котельного оборудования.

Расчет вентиляционной тепловой нагрузки производится по формуле:

Если в жилых помещениях отсутствует организованный воздухообмен, то при расчете теплопотерь здания производится учет тепла, затрачиваемого системой отопления на нагрев инфильтрационного воздуха. При этом обогрев воздуха, поступающего в помещения осуществляется радиаторами систем отопления, то есть учитывается в их тепловой нагрузке.

Если в помещениях установлены герметичные стеклопакеты без встроенных воздушных клапанов, то потери тепла на нагрев воздуха, тем не менее учитываются. Это обусловлено тем, что в случае кратковременного проветривания, поступивший холодный воздух все равно требуется нагревать.

Для более комфортной вентиляции встраивается приточный стеновой клапан.

Учет количества инфильтрационной тепловой энергии производится по нескольким методикам, а в тепловом балансе здания в расчет принимается наибольшее из значений.

Например, количество тепла на нагрев воздуха, проникающего в помещения для компенсации естественной вытяжки, определяется по формуле:

Количество воздуха, поступающего в зимний период в жилые помещения, как правило, обусловлено работой естественных вытяжных систем, поэтому в одном случае принимается равным объему вытягиваемого воздуха.

Количество вытяжки в жилых помещениях определяется согласно СНиП 41-01-2003 по нормативным показателям удаления воздуха от плит и санитарных приборов.

  • От кухонной плиты – электрической 60 м?/час или газовой 90 м?/час;
  • Из ванны и санузлов по 25 м?/час

Во втором случае данный показатель инфильтрации определяется исходя из санитарной нормы свежего наружного воздуха, который должен поступать в помещение для обеспечения оптимального и качественного состава воздушной среды в жилых помещениях. Этот показатель определяется по удельной характеристике: 3 м?/час на 1м? жилой площади.

За расчетное значение принимается наибольший расход воздуха и соответственно большее количество теплопотерь на инфильтрацию.

Пример: Так как здание, рассматриваемое в примере, построено по каркасному типу с установкой окон в деревянных переплетах, то при создании вытяжной вентиляции на кухне и в санузлах объем инфильтрации будет достаточно высок. Дома такого типа, как правило, являются наиболее «дышащими».

Инфильтрационная составляющая определяется согласно выше приведенным методикам. Расчет производится для всего жилого дома при условии, что на кухне установлена электроплита, на первом этаже находится санузел и ванная.

То есть объем вытяжного воздуха по первой методике составляет Lвыт=60+25+25=110 м?/ч,

а по второй методике санитарная норма приточного воздуха Lприт=3м?/ч*62м?(жилая площадь)=186 м3/час.

К расчету принимаем максимальное количество воздуха.

Qинф=0,28*186*1,2*1,005*(22+28)=3 140 Вт, что составляет 44Вт/м?.

Расчет тепловой нагрузки на отопление здания

В холодное время года у нас в стране отопление зданий и сооружений составляют одну из основных статей расходов любого предприятия. И тут не важно жилое это помещение, производственное или складское. Везде нужно поддерживать постоянную плюсовую температуру, чтобы не замерзли люди, не вышло из строя оборудование или не испортилась продукция или материалы. В ряде случаев требуется провести расчет тепловой нагрузки на отопление того или иного зданий или всего предприятия в целом.

В каких случаях производят расчет тепловой нагрузки

  • для оптимизации расходов на отопление;
  • для сокращения расчетной тепловой нагрузки;
  • в том случае если изменился состав теплопотребляющего оборудования (отопительные приборы, системы вентиляции и т.п.);
  • для подтверждения расчетного лимита по потребляемой теплоэнергии;
  • в случае проектирования собственной системы отопления или пункта теплоснабжения;
  • если есть субабоненты, потребляющие тепловую энергию, для правильного ее распределения;
  • В случае подключения к отопительной системе новых зданий, сооружений, производственных комплексов;
  • для пересмотра или заключения нового договора с организацией, поставляющей тепловую энергию;
  • если организация получила уведомление, в котором требуется уточнить тепловые нагрузки в нежилых помещениях;
  • если организация нее имеет возможности установить приборы учета теплоэнергии;
  • в случае увеличения потребления теплоэнергии по непонятным причинам.

На каком основании может производиться перерасчет тепловой нагрузки на отопление здания

Приказ Министерства Регионального Развития № 610 от 28.12.2009 “Об утверждении правил установления и изменения (пересмотра) тепловых нагрузок” (Скачать) закрепляет право потребителей теплоэнергии производить расчет и перерасчет тепловых нагрузок. Так же такой пункт обычно присутствует в каждом договоре с теплоснабжающей организацией. Если такого пункта нет, обсудите с вашими юристами вопрос его внесения в договор.

Но для пересмотра договорных величин потребляемой тепловой энергии должен быть предоставлен технический отчет с расчетом новых тепловых нагрузок на отопление здания, в котором должны быть приведены обоснования снижения потребления тепла. Кроме того, перерасчет тепловых нагрузок производиться после таких мероприятий как:

  • капитальный ремонт здания;
  • реконструкция внутренних инженерных сетей;
  • повышение тепловой защиты объекта;
  • другие энергосберегающие мероприятия.

Методика расчета

Для проведения расчета или перерасчета тепловой нагрузки на отопление зданий, уже эксплуатируемых или вновь подключаемых к системе отопления проводят следующие работы:

  1. Сбор исходных данные об объекте.
  2. Проведение энергетического обследования здания.
  3. На основании полученной после обследования информации производится расчет тепловой нагрузки на отопление, ГВС и вентиляцию.
  4. Составление технического отчета.
  5. Согласование отчета в организации, предоставляющей теплоэнергию.
  6. Заключение нового договора или изменение условий старого.

Сбор исходный данных об объекте тепловой нагрузки

Какие данные необходимо собрать или получить:

  1. Договор (его копия) на теплоснабжение со всеми приложениями.
  2. Справка оформленная на фирменном бланке о фактической численности сотрудников (в случае производственного зданий) или жителей (в случае жилого дома).
  3. План БТИ (копия).
  4. Данные по системе отопления: однотрубная или двухтрубная.
  5. Верхний или нижний розлив теплоносителя.
Читайте также:  Распределительный коллектор. Как сделать своими руками?

Все эти данные обязательны, т.к. на их основе будет производиться расчет тепловой нагрузки, так же вся информация попадет в итоговый отчет. Исходные данные, кроме того, помогут определиться со сроками и объемами работа. Стоимость же расчета всегда индивидуальна и может зависеть от таких факторов как:

  • площадь отапливаемых помещений;
  • тип системы отопления;
  • наличия горячего водоснабжения и вентиляции.

Энергетическое обследование здания

Энергоаудит подразумевает выезд специалистов непосредственно на объект. Это необходимо для того, чтобы провести полный осмотр системы отопления, проверить качество ее изоляции. Так же во время выезда собираются недостающие данные об объекте, которые невозможно получить кроме как по средствам визуального осмотра. Определяются типы используемых радиаторов отопления, их месторасположение и количество. Рисуется схема и прикладываются фотографии. Обязательно осматриваются подводящие трубы, измеряется их диаметр, определяется материал, из которого они изготовлены, как эти трубы подведены, где расположены стояки и т.п.

В результат такого энергетического обследования (энергоаудита) заказчик получит на руки подробный технический отчет и на основании этого отчета уже и будет проихводиться расчет тепловых нагрузок на отопление здания.

Технический отчет

Технический отчет по расчету тепловой нагрузки должен состоять из следующих разделов:

  1. Исходные данные об объекте.
  2. Схема расположения радиаторов отопления.
  3. Точки вывода ГВС.
  4. Сам расчет.
  5. Заключение по результатам энергоаудита, которое должно включать сравнительную таблицу максимальных текущих тепловых нагрузок и договорных.
  6. Приложения.
    1. Свидетельство членства в СРО энергоаудитора.
    2. Поэтажный план здания.
    3. Экспликация.
    4. Все приложения к договору по энергоснабжению.

После составления, технический отчет обязательно должен быть согласован с теплоснабжающей организацией, после чего вносятся изменения в текущий договор или заключается новый.

Пример расчета тепловых нагрузок объекта коммерческого назначения

Это помещение на первом этаже 4-х этажного здания. Месторасположение – г. Москва.

Исходные данные по объекту

Адрес объектаг. Москва
Этажность здания4 этажа
Этаж на котором расположены обследуемые помещенияпервый
Площадь обследуемых помещений112,9 кв.м.
Высота этажа3,0 м
Система отопленияОднотрубная
Температурный график95-70 град. С
Расчетный температурный график для этажа на котором находится помещение75-70 град. С
Тип розливаВерхний
Расчетная температура внутреннего воздуха+ 20 град С
Отопительные радиаторы, тип, количествоРадиаторы чугунные М-140-АО – 6 шт.
Радиатор биметаллический Global (Глобал) – 1 шт.
Диаметр труб системы отопленияДу-25 мм
Длина подающего трубопровода системы отопленияL = 28,0 м.
ГВСотсутствует
Вентиляцияотсутствует
Тепловая нагрузка по договору (час/год)0,02/47,67 Гкал

Расчетная теплопередача установленных радиаторов отопления, с учетом всех потерь, составила 0,007457 Гкал/час.

Максимальный расход теплоэнергии на отопление помещения составил 0,001501 Гкал/час.

Итоговый максимальный расход – 0,008958 Гкал/час или 23 Гкал/год.

В итоге рассчитываем годовую экономию на отопление данного помещения: 47,67-23=24,67 Гкал/год. Таким образом можно сократить расходы на теплоэнергию почти вдвое. А если учесть, что текущая средняя стоимость Гкал в Москве составляет 1,7 тыс. рублей, то годовая экономию в денежном эквиваленте составит 42 тыс. рублей.

Формула расчета в Гкал

Расчет тепловой нагрузки на отопление здания в случае отсутствия счетчиков учета тепловой энергии производится по формуле Q = V * (Т1 – Т2) / 1000, где:

  • V – объем волы, которую потребляет система отопления, измеряется тоннами или куб.м.,
  • Т1 – температура горячей воды. Измеряется в С (градусы по Цельсию) и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название – энтальпия. Если точно определить температуру нельзя то используют усредненные показатели 60-65 С.
  • Т2 – температура холодной воды. Зачастую ее измерить практически невозможно и в таком случае используют постоянные показатели, которые зависят от региона. К примеру, в одном из регионов, в холодное время года показатель будет равен 5, в теплое – 15.
  • 1 000 – коэффициент для получения результата расчета в Гкал.

Для системы отопления с закрытым контуром тепловая нагрузка (Гкал/час) рассчитывается другим способом: Qот = α * qо * V * (tв – tн.р) * (1 + Kн.р) * 0,000001, где:

  • α – коэффициент, призванный корректировать климатические условия. Берется в расчет, если уличная температура отличается от -30 С;
  • V – объем строения по наружным замерам;
  • – удельный отопительный показатель строения при заданной tн.р = -30 С, измеряется в Ккал/куб.м.*С;
  • – расчетная внутренняя температура в здании;
  • tн.р – расчетная уличная температура для составления проекта системы отопления;
  • Kн.р – коэффициент инфильтрации. Обусловлен соотношением тепловых потерь расчетного здания с инфильтрацией и теплопередачей через внешние конструктивные элементы при уличной температуре, которая задана в рамках составляемого проекта.

Расчет по радиаторам отопления на площадь

Укрупненный расчет

Если на 1 кв.м. площади требуется 100 Вт тепловой энергии, то помещение в 20 кв.м. должно получать 2 000 Вт. Типичный радиатор из восьми секций выделяет около 150 Вт тепла. Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

Точный расчет

Точный расчет выполняется по следующей формуле: Qт = 100 Вт/кв.м. × S(помещения)кв.м. × q1 × q2 × q3 × q4 × q5 × q6× q7, где:

  • q1 – тип остекления: обычное =1,27; двойное = 1,0; тройное = 0,85;
  • q2 – стеновая изоляция: слабая, или отсутствующая = 1,27; стена выложенная в 2 кирпича = 1.0, современна, высокая = 0,85;
  • q3 – соотношение суммарной площади оконных проемов к площади пола: 40% = 1,2; 30% = 1,1; 20% – 0,9; 10% = 0,8;
  • q4 – минимальная уличная температура: -35 С = 1,5; -25 С = 1,3; -20 С = 1,1; -15 С = 0,9; -10 С = 0,7;
  • q5 – число наружных стен в помещении: все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2;
  • q6 – тип расчетного помещения над расчетной комнатой: холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8;
  • q7 – высота потолков: 4,5 м = 1,2; 4,0 м = 1,15; 3,5 м = 1,1; 3,0 м = 1,05; 2,5 м = 1,3.

Способы расчета тепловой нагрузки на отопление

При проектировании систем обогрева всех типов строений нужно провести правильные вычисления, а затем разработать грамотную схему отопительного контура. На этом этапе особое внимание следует уделить расчету тепловой нагрузки на отопление. Для решения поставленной задачи важно использовать комплексный подход и учесть все факторы, влияющие на работу системы.

С помощью показателя тепловой нагрузки можно узнать количество теплоэнергии, необходимой для обогрева конкретного помещения, а также здания в целом. Основной переменной здесь является мощность всего отопительного оборудования, которое планируется использовать в системе. Кроме этого, требуется учитывать потери тепла домом.

Идеальной представляется ситуация, в которой мощность отопительного контура позволяет не только устранить все потери теплоэнергии здания, но и обеспечить комфортные условия проживания. Чтобы правильно рассчитать удельную тепловую нагрузку, требуется учесть все факторы, оказывающие влияние на этот параметр:

  • Характеристики каждого элемента конструкции строения. Система вентиляции существенно влияет на потери теплоэнергии.
  • Размеры здания. Необходимо учитывать как объем всех помещений, так и площадь окон конструкций и наружных стен.
  • Климатическая зона. Показатель максимальной часовой нагрузки зависит от температурных колебаний окружающего воздуха.

Оптимальный режим работы системы обогрева может быть составлен только с учетом этих факторов. Единицей измерения показателя может быть Гкал/час или кВт/час.

Перед началом проведения расчета нагрузки на отопление по укрупненным показателям нужно определиться с рекомендуемыми температурными режимами для жилого строения. Для этого придется обратиться к нормам СанПиН 2.1.2.2645−10. Исходя из данных, указанных в этом нормативном документе, необходимо обеспечить оптимальные температурные режимы работы системы обогрева для каждого помещения.

Используемые сегодня способы выполнения расчетов часовой нагрузки на отопительную систему позволяют получать результаты различной степени точности. В некоторых ситуациях требуется провести сложные вычисления, чтобы минимизировать погрешность.

Если же при проектировании системы отопления оптимизация расходов на энергоноситель не является приоритетной задачей, допускается использование менее точных методик.

Любая методика расчета тепловой нагрузки позволяет подобрать оптимальные параметры системы обогрева. Также этот показатель помогает определиться с необходимостью проведения работ по улучшению теплоизоляции строения. Сегодня применяются две довольно простые методики расчета тепловой нагрузки.

Если в строении все помещения имеют стандартные размеры и обладают хорошей теплоизоляцией, можно воспользоваться методом расчета необходимой мощности отопительного оборудования в зависимости от площади. В этом случае на каждые 10 м 2 помещения должен производиться 1 кВт тепловой энергии. Затем полученный результат необходимо умножить на поправочный коэффициент климатической зоны.

Это самый простой способ расчета, но он имеет один серьезный недостаток — погрешность очень высока. Во время проведения вычислений учитывается лишь климатический регион. Однако на эффективность работы системы обогрева влияет много факторов. Таким образом, использовать эту методику на практике не рекомендуется.

Применяя методику расчета тепла по укрупненным показателям, погрешность вычислений окажется меньшей. Этот способ сначала часто применялся для определения теплонагрузки в ситуации, когда точные параметры строения были неизвестны. Для определения параметра применяется расчетная формула:

Qот = q0*a*Vн*(tвн — tнро),

где q0 — удельная тепловая характеристика строения;

a — поправочный коэффициент;

Vн — наружный объем строения;

tвн, tнро — значения температуры внутри дома и на улице.

В качестве примера расчета тепловых нагрузок по укрупненным показателям можно выполнить вычисления максимального показателя для отопительной системы здания по наружным стенам 490 м 2 . Строение двухэтажное с общей площадью в 170 м 2 расположено в Санкт-Петербурге.

Сначала необходимо с помощью нормативного документа установить все нужные для расчета вводные данные:

  • Тепловая характеристика здания — 0,49 Вт/м³*С.
  • Уточняющий коэффициент — 1.
  • Оптимальный температурный показатель внутри здания — 22 градуса.

Предположив, что минимальная температура в зимний период составит -15 градусов, можно все известные величины подставить в формулу — Q =0.49*1*490 (22+15)= 8,883 кВт. Используя самую простую методику расчета базового показателя тепловой нагрузки, результат оказался бы более высоким — Q =17*1=17 кВт/час. При этом укрупненный метод расчета показателя нагрузки учитывает значительно больше факторов:

  • Оптимальные температурные параметры в помещениях.
  • Общую площадь строения.
  • Температуру воздуха на улице.

Также эта методика позволяет с минимальной погрешностью рассчитать мощность каждого радиатора, установленного в отдельно взятом помещении. Единственным ее недостатком является отсутствие возможности рассчитать теплопотери здания.

Так как даже при укрупненном расчете погрешность оказывается довольно высокой, приходится использовать более сложный метод определения параметра нагрузки на отопительную систему. Чтобы результаты оказались максимально точными, необходимо учитывать характеристики дома. Среди них важнейшей является сопротивление теплопередачи ® материалов, использовавшихся для изготовления каждого элемента здания — пол, стены, а также потолок.

Эта величина находится в обратной зависимости с теплопроводностью (λ), показывающей способность материалов переносить теплоэнергию. Вполне очевидно, что чем выше теплопроводность, тем активнее дом будет терять теплоэнергию. Так как эта толщина материалов (d) в теплопроводности не учитывается, то предварительно нужно вычислить сопротивление теплопередачи, воспользовавшись простой формулой — R=d/λ.

Рассматриваемая методика состоит из двух этапов. Сначала рассчитываются теплопотери по оконным проемам и наружным стенам, а затем — по вентиляции. В качестве примера можно взять следующие характеристики строения:

  • Площадь и толщина стен — 290 м² и 0,4 м.
  • В строении находятся окна (двойной стеклопакет с аргоном) — 45 м² (R =0,76 м²*С/Вт).
  • Стены изготовлены из полнотелого кирпича — λ=0,56.
  • Здание было утеплено пенополистиролом — d =110 мм, λ=0,036.

Исходя из вводных данных, можно определить показатель сопротивления телепередачи стен — R=0.4/0.56= 0,71 м²*С/Вт. Затем определяется аналогичный показатель утеплителя — R=0,11/0,036= 3,05 м²*С/Вт. Эти данные позволяют определить следующий показатель — R общ =0,71+3,05= 3,76 м²*С/Вт.

Фактические теплопотери стен составят — (1/3,76)*245+(1/0.76)*45= 125,15 Вт. Параметры температур остались без изменений в сравнении с укрупненным расчетом. Очередные вычисления проводятся в соответствии с формулой — 125,15*(22+15)= 4,63 кВт/час.

На втором этапе рассчитываются теплопотери вентиляционной системы. Известно, что объем дома равен 490 м³, а плотность воздуха составляет 1,24 кг/м³. Это позволяет узнать его массу — 608 кг. На протяжении суток в помещении воздух обновляется в среднем 5 раз. После этого можно выполнить расчет теплопотерь вентиляционной системы — (490*45*5)/24= 4593 кДж, что соответствует 1,27 кВт/час. Остается определить общие тепловые потери строения, сложив имеющиеся результаты, — 4,63+1,27=5,9 кВт/час.

Результат будет максимально точным, если учитывать потери через пол и крышу. Сложные вычисления здесь проводить необязательно, допускается использование уточняющего коэффициента. Процесс расчетов теплонагрузки на систему обогрева отличается высокой сложностью. Однако его можно упростить с помощью программы VALTEC.

Самостоятельный расчет тепловой нагрузки на отопление: часовых и годовых показателей

Как оптимизировать затраты на отопление? Эта задача решается только комплексным подходом, учитывающим все параметры системы, здания и климатические особенности региона. При этом важнейшей составляющей является тепловая нагрузка на отопление: расчет часовых и годовых показателей входят в систему вычислений КПД системы.

Зачем нужно знать этот параметр

Что же представляет собой расчет тепловой нагрузки на отопление? Он определяет оптимальное количество тепловой энергии для каждого помещения и здания в целом. Переменными величинами являются мощность отопительного оборудования – котла, радиаторов и трубопроводов. Также учитываются тепловые потери дома.

Читайте также:  Расчет объема в секциях популярных радиаторов отопления

В идеале тепловая мощность отопительной системы должна компенсировать все тепловые потери и при этом поддерживать комфортный уровень температуры. Поэтому прежде чем выполнить расчет годовой нагрузки на отопление, нужно определиться с основными факторами, влияющими на нее:

  • Характеристика конструктивных элементов дома. Наружные стены, окна, двери, вентиляционная система сказываются на уровне тепловых потерь;
  • Размеры дома. Логично предположить, что чем больше помещение – тем интенсивнее должна работать система отопления. Немаловажным фактором при этом является не только общий объем каждой комнаты, но и площадь наружных стен и оконных конструкций;
  • Климат в регионе. При относительно небольших снижениях температуры на улице нужно малое количество энергии для компенсации тепловых потерь. Т.е. максимальная часовая нагрузка на отопление напрямую зависит от степени снижения температуры в определенный период времени и среднегодовое значение для отопительного сезона.

Учитывая эти факторы составляется оптимальный тепловой режим работы системы отопления. Резюмируя все вышесказанное можно сказать, что определение тепловой нагрузки на отопление необходимо для уменьшения расхода энергоносителя и соблюдения оптимального уровня нагрева в помещениях дома.

Для расчета оптимальной нагрузки на отопление по укрупненным показателям нужно знать точный объем здания. Важно помнить, что эта методика разрабатывалась для больших сооружений, поэтому погрешность вычислений будет велика.

Выбор методики расчета

Перед тем, как выполнить расчет нагрузки на отопление по укрупненным показателям или с более высокой точностью необходимо узнать рекомендуемые температурные режимы для жилого здания.

Во время расчета характеристик отопления нужно руководствоваться нормами СанПиН 2.1.2.2645-10. Исходя из данных таблицы, в каждой комнате дома необходимо обеспечить оптимальный температурный режим работы отопления.

Методики, по которым осуществляется расчет часовой нагрузки на отопление, могут иметь различную степень точности. В некоторых случаях рекомендуется использовать достаточно сложные вычисления, в результате чего погрешность будет минимальна. Если же оптимизация затрат на энергоносители не является приоритетной задачей при проектировании отопления – можно применять менее точные схемы.

Во время расчета почасовой нагрузки на отопление нужно учитывать суточную смену уличной температуры. Для улучшения точности вычисления нужно знать технические характеристики здания.

Простые способы вычисления тепловой нагрузки

Любой расчет тепловой нагрузки нужен для оптимизации параметров системы отопления или улучшения теплоизоляционных характеристик дома. После его выполнения выбираются определенные способы регулирования тепловой нагрузки отопления. Рассмотрим нетрудоемкие методики вычисления этого параметра системы отопления.

Зависимость мощности отопления от площади

Для дома со стандартными размерами комнат, высотой потолков и хорошей теплоизоляцией можно применить известное соотношение площади помещения к требуемой тепловой мощности. В таком случае на 10 м² потребуется генерировать 1 кВт тепла. К полученному результату нужно применить поправочный коэффициент, зависящий от климатической зоны.

Предположим, что дом находится в Московской области. Его общая площадь составлять 150 м². В таком случае часовая тепловая нагрузка на отопление будет равна:

15*1=15 кВт/час

Главным недостатком этого метода является большая погрешность. Расчет не учитывает изменение погодных факторов, а также особенности здания – сопротивление теплопередачи стен, окон. Поэтому на практике его использовать не рекомендуется.

Укрупненный расчет тепловой нагрузки здания

Укрупненный расчет нагрузки на отопление характеризуется более точными результатами. Изначально он применялся для предварительного расчета этого параметра при невозможности определить точные характеристики здания. Общая формула для определения тепловой нагрузки на отопление представлена ниже:

Где – удельная тепловая характеристика строения. Значения нужно брать из соответствующей таблицы, а – поправочный коэффициент, о котором говорилось выше, – наружный объем строения, м³, Tвн и Tнро – значения температуры внутри дома и на улице.

Предположим, что необходимо рассчитать максимальную часовую нагрузку на отопление в доме с объемом по наружным стенам 480 м³ (площадь 160 м², двухэтажный дом). В этом случае тепловая характеристика будет равна 0,49 Вт/м³*С. Поправочный коэффициент а = 1 (для Московской области). Оптимальная температура внутри жилого помещения (Твн ) должна составлять +22°С. Температура на улице при этом будет равна -15°С. Воспользуемся формулой для расчета часовой нагрузки на отопление:

Q=0.49*1*480(22+15)= 9,408 кВт

По сравнению с предыдущим расчетом полученная величина меньше. Однако она учитывает важные факторы – температуру внутри помещения, на улице, общий объем здания. Подобные вычисления можно сделать для каждой комнаты. Методика расчета нагрузки на отопление по укрупненным показателям дает возможность определить оптимальную мощность для каждого радиатора в отдельно взятом помещении. Для более точного вычисления нужно знать среднетемпературные значения для конкретного региона.

Такой метод расчета можно применять для вычисления часовой тепловой нагрузки на отопление. Но полученные результаты не дадут оптимально точную величину тепловых потерь здания.

Точные расчеты тепловой нагрузки

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R)? Это величина, обратная теплопроводности (λ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

R=d/λ

Расчет по стенам и окнам

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м²;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи – R=0.36/0.56= 0,64 м²*С/Вт;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон – 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

124*(22+15)= 4,96 кВт/час

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

4,96+1,11=6,07 кВт/час

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

Расчет тепловых нагрузок на отопление, методика и формула расчета

Тепловые нагрузки систем теплоснабжения

  • нагрузку на конструкцию теплоснабжения;
  • нагрузку на систему обогрева пола, если она планируется к установке в доме;
  • нагрузку на систему естественной и/или принудительной вентиляции;
  • нагрузку на систему горячего водоснабжения;
  • нагрузку, связанную с различными технологическими нуждами.

Характеристики объекта для расчета тепловых нагрузок

  • назначение и тип объекта недвижимости. Для расчета важно знать, какое здание будет обогреваться – жилой или нежилой дом, квартира (прочитайте также: “Квартирный прибор учета тепловой энергии”). От типа постройки зависит норма нагрузки, определяемая компаниями, поставляющими тепло, а, соответственно, расходы на теплоснабжение;
  • архитектурные особенности. Во внимание принимаются габариты таких наружных ограждений, как стены, кровля, напольное покрытие и размеры оконных, дверных и балконных проемов. Немаловажными считаются этажность здания, а также наличие подвалов, чердаков и присущие им характеристики;
  • норма температурного режима для каждого помещения в доме. Подразумевается температура для комфортного пребывания людей в жилой комнате или зоне административной постройки (прочитайте: “Тепловой расчет помещения и здания целиком, формула тепловых потерь”);
  • особенности конструкции наружных ограждений, включая толщину и тип стройматериалов, наличие теплоизоляционного слоя и используемая для этого продукция;
  • назначение помещений. Эта характеристика особо важна для производственных зданий, в которых для каждого цеха или участка необходимо создать определенные условия относительно обеспечения температурного режима;
  • наличие специальных помещений и их особенности. Это касается, например, бассейнов, оранжерей, бань и т.д.;
  • степень техобслуживания. Наличие/отсутствие горячего водоснабжения, централизованного отопления, системы кондиционирования и прочего;
  • количество точек для забора подогретого теплоносителя. Чем их больше, тем значительнее тепловая нагрузка, оказываемая на всю отопительную конструкцию;
  • количество людей, находящихся в здании или проживающих в доме. От данного значения напрямую зависят влажность и температура, которые учитываются в формуле вычисления тепловой нагрузки;
  • прочие особенности объекта. Если это промышленное здание, то ими могут быть, количество рабочих дней на протяжении календарного года, число рабочих в смену. Для частного дома учитывают, сколько проживает в нем людей, какое количество комнат, санузлов и т.д.

Расчет нагрузок тепла

  • степень теплопотерь наружных ограждений;
  • мощность, необходимая для подогрева теплоносителя;
  • количество тепловой энергии, требуемое для нагрева воздуха для принудительной приточной вентиляции;
  • тепло, которое нужно для подогрева воды в бане или бассейне;
  • возможное дальнейшее расширение обогревательной системы. Это может быть создание отопления в мансарде, на чердаке, в подвале или в различных пристройках и строениях. Читайте также: “Как сделать отопление мансарды – популярные варианты обогрева”.

Особенности расчета тепловых нагрузок

Методы вычисления тепловых нагрузок

  • вычисление теплопотерь с использованием укрупненных показателей;
  • определение теплоотдачи установленного в здании отопительно-вентиляционного оборудования;
  • вычисление значений с учетом различных элементов ограждающих конструкций, а также добавочных потерь, связанных с нагревом воздуха.

Укрупненный расчет тепловой нагрузки

  • α – поправочный коэффициент, учитывающий климатические особенности конкретного региона, где строится здание (применяется в том случае, когда расчетная температура отличается от 30 градусов мороза);
  • q0 – удельная характеристика теплоснабжения, которую выбирают, исходя из температуры самой холодной недели на протяжении года (так называемой «пятидневки»). Читайте также: “Как рассчитывается удельная отопительная характеристика здания – теория и практика”;
  • V – наружный объем постройки.

Виды тепловых нагрузок для расчетов

  1. Сезонные нагрузки, имеющие следующие особенности:

– им присущи изменения в зависимости от температуры окружающего воздуха на улице;
– наличие отличий в величине расхода тепловой энергии в соответствии с климатическими особенностями региона местонахождения дома;
– изменение нагрузки на отопительную систему в зависимости от времени суток. Поскольку наружные ограждения имеют теплостойкость, данный параметр считается незначительным;
– расходы тепла вентиляционной системы в зависимости от времени суток.

  • Постоянные тепловые нагрузки. В большинстве объектов системы теплоснабжения и горячего водоснабжения они используются на протяжении года. Например, в теплое время года расходы тепловой энергии в сравнении с зимним периодом снижаются где-то на 30-35%.
  • Сухое тепло. Представляет собой тепловое излучение и конвекционный теплообмен за счет иных подобных устройств. Определяют данный параметр при помощи температуры сухого термометра. Он зависит от многих факторов, среди которых окна и двери, системы вентиляции, различное оборудование, воздухообмен, происходящий за счет наличия щелей в стенах и перекрытиях. Также учитывают количество людей, присутствующих в помещении.
  • Скрытое тепло. Образуется в результате процесса испарения и конденсации. Температура определяется при помощи влажного термометра. В любом по назначению помещении на уровень влажности влияют:

    – численность людей, одновременно находящихся в помещении;
    – наличие технологического или другого оборудования;
    – потоки воздушных масс, проникающих сквозь щели и трещины, имеющиеся в ограждающих конструкциях здания.

  • Ссылка на основную публикацию